

Project : Fortress Lending Platform

Customer : Jetfuel Finance

Date : 12/04/2021

Copyright © 2021 Hash0X (audit@hash0x.com)

2

Table of Content

Disclaimer... 3

Purpose of the report ……………………………………………………………………….. 3

Introduction...4

Audit Summary …………………………………………………………………………………….. 5

Overview..6

Methodology..6

Classification / Issue Types Definition:..6

Attacks & Issues considered while auditing ..7

Overflows and underflows...7

Reentrancy Attack...7

Replay attack...7

Short address attack ..8

Approval Double-spend ...8

Sybil attacks ...8

Issues Found ...9

High Severity Issues...9

Moderate Severity Issues...9

Low Severity Issues..9

Informational Observations...10

Audit Conclusion …………………………….………………………………………………….. 11

Appendix ..12

Smart Contract Functional Summary..12

Code Flow Diagrams …………………….……………………………………………….. 21

Slither Results Log ……………………….……………………………………….………. 24

Copyright © 2021 Hash0X (audit@hash0x.com)

3

Disclaimer

Hash0X reports are not, nor should be considered, an "endorsement" or "disapproval" of any

particular project or team. These reports are not, nor should be considered, an indication of the

economics or value of any "product" or "asset" created by any team or project that contracts

Hash0X to perform a security review.

The audit makes no statements or warranties about utility of the code, safety of the code,

suitability of the business model, regulatory regime for the business model, or any other

statements about fitness of the contracts to purpose, or their bug free status. The audit

documentation is for discussion purposes only.

The content of this audit report is provided “as is”, without representations and warranties of

any kind, and Hash0X disclaims any liability for damage arising out of, or in connection with,

this audit report. Copyright of this report remains with Hash0X.

Purpose of the report

The Audits and the analysis described therein are created solely for Clients and published with

their consent. The scope of our review is limited to a review of Solidity code and only the Solidity

code we note as being within the scope of our review within this report. The Solidity language

itself remains under development and is subject to unknown risks and flaws. The review does

not extend to the compiler layer, or any other areas beyond the Solidity programming language

that could present security risks. Cryptographic tokens and smart contracts are emergent

technologies and carry with them high levels of technical risk and uncertainty.

The Audits are not an endorsement or indictment of any particular project or team, and the

Audits do not guarantee the security of any particular project. This Report does not consider,

and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset.

Copyright © 2021 Hash0X (audit@hash0x.com)

4

Introduction

We first thank Fortress Team for giving us the opportunity to audit their smart contract. This

document outlines our methodology, audit details, and results. Fortress Team asked us to

review their Fortress Protocol smart contracts.

Hash0X reviewed the system from a technical perspective looking for bugs, issues and

vulnerabilities in their code base. This audit report is valid for the smart contract at the

mentioned commit hashes only. This audit report is not valid for any other versions of the smart

contract files.

Project files

File Name MD5 Hash

FTS.sol 16184E612400DCE0013F54FB60212FF2

FAI.sol D09CB24C6EA078EEC2F38348244E215C

Unitroller.sol 2CA395D65CCA9872B141A39761850117

Comptroller.sol B9215D650D78D056DBF26DFB949FF9DF

FAIUnitroller.sol D363232ED72C9F0B78DE8AB0140EF5D3

FAIController.sol 28668F1BCD8DD4BFA514789790842396

SFTVaultProxy.sol 5B2F3BA1C4777003C7BF7AE3D1914043

SFTVault.sol 538ABD88AFDC40BC1D1487216BCB5F58

FortressLens.sol CDEA199BB76B31007252700B9469371C

WhitePaperInterestRateModel.sol 111F06FACC068AC86133F754F4396F40

FortressPriceOracle.sol 4E39ACF0B27511860B168F6C76C85B09

FBep20Delegate.sol F48021DCC4AF0D5AFA2B9712C61484E7

FBep20Delegator.sol 5993302613299E41D2043DF3459D858C

Timelock.sol 8025863D3B4036F7FFC40E53CAD717AB

GovernorAlpha.sol F6CFEA696869B67C6414B4616EA0A6F6

Copyright © 2021 Hash0X (audit@hash0x.com)

5

Audit Summary

Several issues were found in the first audit which were fixed by the Fortress Team

and no issues were found in the revised audit of the patched version.

High Severity Issues Found 0

Moderate Severity Issues Found 0

Low Severity Issues 1

Informational Observations 3

The smart contract is considered to pass the audit, as of the audit date, if no high severity or

moderate severity issues are found.

Copyright © 2021 Hash0X (audit@hash0x.com)

6

Overview

The project has 15 core Solidity files for the Fortress Protocol Smart Contract, the Fortress

Protocol file that contains imports from some OpenZeppelin smart contract libraries. Code

review of OpenZeppelin libraries or servers / backend system is outside the scope of this audit

report. We manually reviewed each line of code in the smart contract within the scope.

Methodology

Hash0X manually reviewed the smart contract line-by-line, keeping in mind industry best

practices and known attacks, looking for any potential issues and vulnerabilities, and areas

where improvements are possible.

We also used automated tools like slither / surya for analysis and reviewing the smart contract.

These tools often give false-positives, and any issues reported by them but not included in the

issue list can be considered not valid.

Classification / Issue Types Definition:

1. High Severity: which presents a significant security vulnerability or failure of the

contract across a range of scenarios, or which may result in loss of funds.

2. Moderate Severity: which affects the desired outcome of the contract execution or

introduces a weakness that can be exploited. It may not result in loss of funds but breaks

the functionality or produces unexpected behavior.

3. Low Severity: which does not have a material impact on the contract execution and is

likely to be subjective.

As mentioned above, the smart contract is considered to pass the audit, as of the audit date, if

no high severity or moderate severity issues are found.

Copyright © 2021 Hash0X (audit@hash0x.com)

7

Attacks & Issues considered while auditing

In order to check for the security of the contract, we reviewed each line of code in the smart

contract considering several known Smart Contract Attacks & known issues

 Potential Issue: Overflows and underflows

An overflow happens when the limit of the type variable uint256 , 2 ** 256, is exceeded.

What happens is that the value resets to zero instead of incrementing more. For

instance, if we want to assign a value to a uint bigger than 2 ** 256 it will simple go to

0 — this is dangerous. On the other hand, an underflow happens when you try to subtract

0 minus a number bigger than 0. For example, if you subtract 0 - 1 the result will be = 2

** 256 instead of -1. This is quite dangerous.

Finding: This contract DOES check for overflows and underflows using SafeMath

libraries.

 Reentrancy Attack

One of the major dangers of calling external contracts is that they can take over the

control flow, and make changes to your data that the calling function wasn't expecting.

This class of bug can take many forms, and both of the major bugs that led to the DAO's

collapse were bugs of this sort.

Finding: This smart contract uses Check-effect pattern to protect against this attack.

 Replay attack

The replay attack consists of making a transaction on one blockchain like the original

Ethereum’s blockchain and then repeating it on another blockchain like the Ethereum’s

classic blockchain. The ether is transferred like a normal transaction from a blockchain

to another. Though it's no longer a problem because since the version 1.5.3 of Geth and

1.4.4 of Parity both implement the attack protection EIP 155 by Vitalik Buterin. So, the

people that will use the contract depend on their own ability to be updated with those

programs to keep themselves secure. Since this full system is a cross-chain bridge

between Binance Smart Chain and Ethereum Blockchains – it is recommended to not

Copyright © 2021 Hash0X (audit@hash0x.com)

8

let users enter arbitrary chain IDs in the transfer and receipt requests which may result

in a potential replay attack in the future.

 Short address attack

This attack affects ERC20 tokens, was discovered by the Golem team and consists of

the following: A user creates an Ethereum wallet with a trailing 0, which is not hard

because it’s only a digit. For instance: 0xiofa8d97756as7df5sd8f75g8675ds8gsdg0

Then he buys tokens by removing the last zero: Buy 1000 tokens from account

0xiofa8d97756as7df5sd8f75g8675ds8gsdg. If the contract has enough amount of

tokens and the buy function doesn’t check the length of the address of the sender, the

Ethereum’s virtual machine will just add zeroes to the transaction until the address is

complete.

Finding: This issue is not applicable to Fortress smart contracts.

 Approval Double-spend

ERC20 Standard allows users to approve other users to manage their tokens, or spend

tokens from their account till a certain amount, by setting the user’s allowance with the

standard `approve` function, then the allowed user may use `transferFrom` to spend the

allowed tokens. Hypothetically, given a situation where Alice approves Bob to spend

100 Tokens from her account, and if Alice needs to adjust the allowance to allow Bob

to spend 20 more tokens, normally – she’d check Bob’s allowance (100 currently) and

start a new `approve` transaction allowing Bob to spend a total of 120 Tokens instead

of 100 Tokens.

Finding: Likely impact of this bug is low for most situations. For more, see this

discussion on GitHub:

https://github.com/ethereum/EIPs/issues/20#issuecomment263524729

https://github.com/ethereum/EIPs/issues/20#issuecomment263524729

Copyright © 2021 Hash0X (audit@hash0x.com)

9

Issues Found

High Severity Issues

No moderate severity issues were found in the smart contract.

Moderate Severity Issues

No moderate severity issues were found in the smart contract.

Low Severity Issues

(1) Possibility of infinite loop:

 In execute function in GovernorAlpha.sol contract as well as many other places, there are

 loops which are not limited. If they are used with moderation, then its fine. Otherwise, it

 might hit the block gas limit.

Fix: Fortress team will make sure to use these functions with limited loop iterations.

Informational Observations

(1) Use latest solidity version: It is recommended to use latest solidity version as they fix many

compiler levels bugs from the old versions.

(2) Use visibility External over public: If any function is not being called internally, then it is

better to specify its visibility as external. It saves some gas as well.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Copyright © 2021 Hash0X (audit@hash0x.com)

10

Audit Conclusion

The fortress protocol smart contract codes were written very systematic, that we

did not find any major issues in it. Hence, this code is ready for the production.

Due to the nature of the smart contract protocol, there are unlimited use case

scenarios, thus it is not possible to give guarantee about the future outcomes.

This audit is based on manual code analysis as well as used latest static tools.

This audit report presents all the findings based on standard audit procedure,

which includes manual analysis as well as automated software tools. Smart

Contract’s high-level description of functions was presented in Appendix section

of the report.

Audit report contains all found security vulnerabilities and other issues in the

reviewed code.

Security state of the reviewed contract based on extensive audit procedure

scope is “Well Secured”.

Copyright © 2021 Hash0X (audit@hash0x.com)

11

Appendix

Smart Contract Functional Summary

FTS.sol

Sl. Function Type Observation Conclusion

1 constructor write Passed No Issue

2 allowance read Passed No Issue

3 approve write Passed No Issue

4 balanceOf read Passed No Issue

5 transfer write Passed No Issue

6 transferFrom write Passed No Issue

7 delegate write Passed No Issue

8 delegateBySig write Passed No Issue

9 getCurrentVotes read Passed No Issue

10 getPriorVotes read Infinite loop
possibility

Votes must not be
excessive

11 _delegate internal Passed No Issue

12 _transferTokens internal Passed No Issue

13 _moveDelegates internal Passed No Issue

14
_writeCheckpoint

internal Passed No Issue

15 safe32 read Passed No Issue

16 safe96 read Passed No Issue

17 add96 read Passed No Issue

18 sub96 read Passed No Issue

19 getChainId read Passed No Issue

Copyright © 2021 Hash0X (audit@hash0x.com)

12

FAI.sol

Sl. Function Type Observation Conclusion

1 rely write Passed No Issue

2 deny write Passed No Issue

3 add read Passed No Issue

4 sub read Passed No Issue

5 constructor write Passed No Issue

6 transfer write Passed No Issue

7 transferFrom write Passed No Issue

8 mint write No max minting Unitroller
regulates
minting

9 burn write Passed No Issue

10 approve write Passed No Issue

11 push write Passed No Issue

12 pull write Passed No Issue

13 move write Passed No Issue

14 permit write Passed No Issue

Unitroller.sol

Sl. Function Type Observation Conclusion

1 constructor write Passed No Issue

2 _setPendingImplementation write Passed No Issue

3 _acceptImplementation write Passed No Issue

4 _setPendingAdmin write Passed No Issue

5 _acceptAdmin write Passed No Issue

6 fallback write Delegates to
implementation

No Issue

Copyright © 2021 Hash0X (audit@hash0x.com)

13

Comptroller.sol

Sl Function Type Observation Conclusion

1 constructor write Passed No Issue

2 getAssetsIn read Passed No Issue

3 checkMembership read Passed No Issue

4 enterMarkets write Infinite loop
possibility

Keep
fTokens
limited

5 addToMarketInternal internal Passed No Issue

6 exitMarket write Passed No Issue

7 mintAllowed write Passed No Issue

8 mintVerify write Passed No Issue

9 redeemAllowed write Passed No Issue

10 redeemAllowedInternal internal Passed No Issue

11 redeemVerify write Passed No Issue

12 borrowAllowed write Passed No Issue

13 borrowVerify write Passed No Issue

14 repayBorrowAllowed write Passed No Issue

15 repayBorrowVerify write Passed No Issue

16 liquidateBorrowAllowed write Passed No Issue

17 liquidateBorrowVerify write Passed No Issue

18 seizeAllowed write Passed No Issue

19 seizeVerify write Passed No Issue

20 transferAllowed write Passed No Issue

21 transferVerify write Passed No Issue

22 getAccountLiquidity read Passed No Issue

23 getHypotheticalAccountLiquidity read Passed No Issue

24 getHypotheticalAccountLiquidityI
nternal

internal Infinite loop
possibility

Keep assets
limited

25 liquidateCalculateSeizeTokens read Passed No Issue

26 _setPriceOracle write Passed No Issue

27 _setCloseFactor write Passed No Issue

28 _setCollateralFactor write Passed No Issue

29 _setMaxAssets write Passed No Issue

30 _setLiquidationIncentive write Passed No Issue

31 _supportMarket write Passed No Issue

32 _addMarketInternal internal Passed No Issue

33 _setProtocolPaused write Passed No Issue

34 _setFAIController write Passed No Issue

35 _setFAIMintRate write Passed No Issue

Copyright © 2021 Hash0X (audit@hash0x.com)

14

36 _setTreasuryData write Passed No Issue

37 _become write Passed No Issue

38 refreshFortressSpeeds write Passed No Issue

39 refreshFortressSpeedsInternal internal Infinite loop
possibility

Markets
must be
limited

40 updateFortressSupplyIndex internal Passed No Issue

41 updateFortressBorrowIndex internal Passed No Issue

42 distributeSupplierFortress internal Passed No Issue

43 distributeBorrowerFortress internal Passed No Issue

44 distributeFAIMinterFortress write Passed No Issue

45 transferFTS internal Passed No Issue

46 claimFortress write Infinite loop
possibility

Array length
must be
limited

47 _setFortressRate write Passed No Issue

48 _setFortressFAIRate write Passed No Issue

49 _setFortressFAIVaultRate write Passed No Issue

50 _setFAIVaultInfo write Passed No Issue

51 _addFortressMarkets write Infinite loop
possibility

Array length
must be
limited

52 _addFortressMarketInternal internal Passed No Issue

53 _dropFortressMarket write Passed No Issue

54 getAllMarkets read Passed No Issue

55 getBlockNumber read Passed No Issue

56 getFTSAddress read hard coded
address

Keep it in a
variable

57 setMintedFAIOf write Passed No Issue

58 releaseToVault write Passed No Issue

Copyright © 2021 Hash0X (audit@hash0x.com)

15

FAIUnitroller.sol

Sl. Function Type Observation Conclusion

1 constructor write Passed No Issue

2 _setPendingImplementation write Passed No Issue

3 _acceptImplementation write Passed No Issue

4 _setPendingAdmin write Passed No Issue

5 _acceptAdmin write Passed No Issue

6 fallback write Delegates to
implementation

No Issue

FAIController.sol

Sl. Function Type Observation Conclusion

1 mintFAI write Passed No Issue

2 repayFAI write Passed No Issue

3 _initializeFortressFAIState write Passed No Issue

4 updateFortressFAIMintIndex write Passed No Issue

5 calcDistributeFAIMinterFortress write Passed No Issue

6 _setComptroller write Passed No Issue

7 _become write Passed No Issue

8 getMintableFAI write Infinite loop
possibility

Keep array
length limited

9 getBlockNumber read Passed No Issue

10 getFAIAddress read hard coded
address

Keep it in a
variable

SFTVaultProxy.sol

Sl. Function Type Observation Conclusion

1 constructor write Passed No Issue

2 _setPendingImplementation write Passed No Issue

3 _acceptImplementation write Passed No Issue

4 _setPendingAdmin write Passed No Issue

5 _acceptAdmin write Passed No Issue

6 fallback function write Delegates to
implementation

No Issue

Copyright © 2021 Hash0X (audit@hash0x.com)

16

SFTVault.sol

Sl. Function Type Observation Conclusion

1 constructor write Passed No Issue

2 deposit write Passed No Issue

3 withdraw write Passed No Issue

4 claim write Passed No Issue

5 _withdraw internal Passed No Issue

6 pendingFTS read Passed No Issue

7 updateAndPayOutPending internal Passed No Issue

8 safeFTSTransfer internal Passed No Issue

9 updatePendingRewards write Passed No Issue

10 updateVault internal Passed No Issue

11 getAdmin read Passed No Issue

12 burnAdmin write Passed No Issue

13 setNewAdmin write Passed No Issue

14 _become write Passed No Issue

15 setFortressInfo write Passed No Issue

FortressLens.sol

Sl. Function Type Observation Conclusion

1 fTokenMetadata write Passed No Issue

2 fTokenMetadataAll write Infinite loop
possibility

Keep array
length limited

3 fTokenBalances write Passed No Issue

4 fTokenBalancesAll write Infinite loop
possibility

Keep array
length limited

5 fTokenUnderlyingPrice read Passed No Issue

6 fTokenUnderlyingPriceAll read Infinite loop
possibility

Keep array
length limited

7 getAccountLimits read Passed No Issue

8 getGovReceipts read Infinite loop
possibility

Keep array
length limited

9 setProposal internal Passed No Issue

10 getGovProposals read Infinite loop
possibility

Keep array
length limited

11 getFTSBalanceMetadata read Passed No Issue

12 getFTSBalanceMetadataExt write Passed No Issue

13 getFortressVotes read Passed No Issue

Copyright © 2021 Hash0X (audit@hash0x.com)

17

WhitePaperInterestRateModel.sol

Sl. Function Type Observation Conclusion

1 constructor write Passed No Issue

2 utilizationRate read Passed No Issue

3 getBorrowRate read Passed No Issue

4 getSupplyRate read Passed No Issue

FortressPriceOracle.sol

Sl. Function Type Observation Conclusion

1 constructor write Passed No Issue

2 getUnderlyingPrice read Passed No Issue

3 setUnderlyingPrice write Passed No Issue

4 setDirectPrice write Passed No Issue

5 assetPrices read Passed No Issue

6 compareStrings read Passed No Issue

7 setAdmin write Passed No Issue

FBep20Delegator.sol

Sl. Function Type Observation Conclusion

1 constructor write Passed No Issue

2 _resignImplementation write Passed No Issue

3 _setImplementation write Passed No Issue

4 mint write Passed No Issue

5 redeem write Passed No Issue

6 redeemUnderlying write Passed No Issue

7 borrow write Passed No Issue

8 repayBorrow write Passed No Issue

9 repayBorrowBehalf write Passed No Issue

10 liquidateBorrow write Passed No Issue

11 transfer write Passed No Issue

12 transferFrom write Passed No Issue

13 approve write Passed No Issue

14 allowance read Passed No Issue

15 balanceOf read Passed No Issue

16 balanceOfUnderlying write Passed No Issue

17 getAccountSnapshot read Passed No Issue

18 borrowRatePerBlock read Passed No Issue

Copyright © 2021 Hash0X (audit@hash0x.com)

18

19 supplyRatePerBlock read Passed No Issue

20 totalBorrowsCurrent write Passed No Issue

21 borrowBalanceCurrent write Passed No Issue

22 borrowBalanceStored read Passed No Issue

23 exchangeRateCurrent write Passed No Issue

24 exchangeRateStored read Passed No Issue

25 getCash read Passed No Issue

26 accrueInterest write Passed No Issue

27 seize write Passed No Issue

28 _setPendingAdmin write Passed No Issue

29 _setComptroller write Passed No Issue

30 _setReserveFactor write Passed No Issue

31 _acceptAdmin write Passed No Issue

32 _addReserves write Passed No Issue

33 _reduceReserves write Passed No Issue

34 _transferReserves write Passed No Issue

35 _setInterestRateModel write Passed No Issue

36 delegateTo internal Passed No Issue

37 delegateToImplementation write Passed No Issue

38 delegateToViewImplementa
tion

read Passed No Issue

39 delegateToViewAndReturn read Passed No Issue

40 delegateAndReturn write Passed No Issue

41 fallback function write Passed No Issue

Copyright © 2021 Hash0X (audit@hash0x.com)

19

Timelock.sol

Sl. Function Type Observation Conclusion

1 constructor write Passed No Issue

2 setDelay write caller was required
to be contract itself

It should be an
admin

3 acceptAdmin write Passed No Issue

4 setPendingAdmin write caller was required
to be contract itself

It should be an
admin

5 queueTransaction write Passed No Issue

6 cancelTransaction write Passed No Issue

7 executeTransaction write Passed No Issue

8 getBlockTimestamp read Passed No Issue

GovernorAlpha.sol

Sl. Function Type Observation Conclusion

1 constructor write Passed No Issue

2 propose write Passed No Issue

3 queue write Passed No Issue

4 _queueOrRevert internal Passed No Issue

5 execute write Infinite loop
possibility

Keep array
length limited

6 cancel write Infinite loop
possibility

Keep array
length limited

7 getActions read Passed No Issue

8 getReceipt read Passed No Issue

9 state read Passed No Issue

10 castVote write Passed No Issue

11 castVoteBySig write Passed No Issue

12 _castVote internal Passed No Issue

13 __acceptAdmin write Passed No Issue

14 __abdicate write Passed No Issue

15 __queueSetTimelock
PendingAdmin

write Passed No Issue

16 __executeSetTimelock
PendingAdmin

write Passed No Issue

17 add256 read Passed No Issue

18 sub256 read Passed No Issue

19 getChainId read Passed No Issue

Copyright © 2021 Hash0X (audit@hash0x.com)

20

Code Flow Diagrams
Contract Comptroller

Copyright © 2021 Hash0X (audit@hash0x.com)

21

Contract FAI

Copyright © 2021 Hash0X (audit@hash0x.com)

22

Contract FTS

Copyright © 2021 Hash0X (audit@hash0x.com)

23

Slither Results Log

root@fedrik-ThinkPad-T410:/home/fedrik/slither# slither ../Fortress-contracts/contracts/
Compilation warnings/errors on ../Fortress-contracts/contracts/FortressPriceOracle.sol:
../Fortress-contracts/contracts/FortressPriceOracle.sol:2:1: Warning: Experimental features
are turned on. Do not use experimental features on live deployments.
pragma experimental ABIEncoderV2;
^-------------------------------^

Compilation warnings/errors on ../Fortress-contracts/contracts/GovernorAlpha.sol:
../Fortress-contracts/contracts/GovernorAlpha.sol:2:1: Warning: Experimental features are
turned on. Do not use experimental features on live deployments.
pragma experimental ABIEncoderV2;
^-------------------------------^

Compilation warnings/errors on ../Fortress-contracts/contracts/FAIVault.sol:
../Fortress-contracts/contracts/FAIVaultProxy.sol:6:1: Error: Identifier already declared.
contract FAIVaultProxy is FAIVaultAdminStorage, FAIVaultErrorReporter {
^ (Relevant source part starts here and spans across multiple lines).
../Fortress-contracts/contracts/FAIVaultProxy.sol:3:1: The previous declaration is here:
import "./FAIVaultStorage.sol";
^-----------------------------^

Traceback (most recent call last):
 File "/usr/local/lib/python3.6/dist-packages/crytic_compile/platform/solc.py", line 409, in
_run_solc
 ret = json.loads(stdout)
 File "/usr/lib/python3.6/json/__init__.py", line 354, in loads
 return _default_decoder.decode(s)
 File "/usr/lib/python3.6/json/decoder.py", line 339, in decode
 obj, end = self.raw_decode(s, idx=_w(s, 0).end())
 File "/usr/lib/python3.6/json/decoder.py", line 357, in raw_decode
 raise JSONDecodeError("Expecting value", s, err.value) from None
json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
 File "/usr/local/lib/python3.6/dist-packages/slither_analyzer-0.7.1-
py3.6.egg/slither/__main__.py", line 721, in main_impl
) = process_all(filename, args, detector_classes, printer_classes)
 File "/usr/local/lib/python3.6/dist-packages/slither_analyzer-0.7.1-
py3.6.egg/slither/__main__.py", line 71, in process_all
 compilations = compile_all(target, **vars(args))
 File "/usr/local/lib/python3.6/dist-packages/crytic_compile/crytic_compile.py", line 1097, in
compile_all
 compilations.append(CryticCompile(filename, **kwargs))
 File "/usr/local/lib/python3.6/dist-packages/crytic_compile/crytic_compile.py", line 137, in init

Copyright © 2021 Hash0X (audit@hash0x.com)

24

 self._compile(**kwargs)
 File "/usr/local/lib/python3.6/dist-packages/crytic_compile/crytic_compile.py", line 987, in
_compile
 self._platform.compile(self, **kwargs)
 File "/usr/local/lib/python3.6/dist-packages/crytic_compile/platform/solc.py", line 108, in
compile
 targets_json = _get_targets_json(crytic_compile, self._target, **kwargs)
 File "/usr/local/lib/python3.6/dist-packages/crytic_compile/platform/solc.py", line 217, in
_get_targets_json
 force_legacy_json=force_legacy_json,
 File "/usr/local/lib/python3.6/dist-packages/crytic_compile/platform/solc.py", line 413, in
_run_solc
 raise InvalidCompilation(f"Invalid solc compilation {stderr}")
crytic_compile.platform.exceptions.InvalidCompilation: Invalid solc compilation ../Fortress-
contracts/contracts/FAIVaultProxy.sol:6:1: Error: Identifier already declared.
contract FAIVaultProxy is FAIVaultAdminStorage, FAIVaultErrorReporter {
^ (Relevant source part starts here and spans across multiple lines).
../Fortress-contracts/contracts/FAIVaultProxy.sol:3:1: The previous declaration is here:
import "./FAIVaultStorage.sol";

ERROR:root:None
ERROR:root:Error in ../Fortress-contracts/contracts/
ERROR:root:Traceback (most recent call last):
 File "/usr/local/lib/python3.6/dist-packages/crytic_compile/platform/solc.py", line 409, in
_run_solc
 ret = json.loads(stdout)
 File "/usr/lib/python3.6/json/__init__.py", line 354, in loads
 return _default_decoder.decode(s)
 File "/usr/lib/python3.6/json/decoder.py", line 339, in decode
 obj, end = self.raw_decode(s, idx=_w(s, 0).end())
 File "/usr/lib/python3.6/json/decoder.py", line 357, in raw_decode
 raise JSONDecodeError("Expecting value", s, err.value) from None
json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
 File "/usr/local/lib/python3.6/dist-packages/slither_analyzer-0.7.1-
py3.6.egg/slither/__main__.py", line 721, in main_impl
) = process_all(filename, args, detector_classes, printer_classes)
 File "/usr/local/lib/python3.6/dist-packages/slither_analyzer-0.7.1-
py3.6.egg/slither/__main__.py", line 71, in process_all
 compilations = compile_all(target, **vars(args))
 File "/usr/local/lib/python3.6/dist-packages/crytic_compile/crytic_compile.py", line 1097, in
compile_all
 compilations.append(CryticCompile(filename, **kwargs))
 File "/usr/local/lib/python3.6/dist-packages/crytic_compile/crytic_compile.py", line 137, in init
 self._compile(**kwargs)

Copyright © 2021 Hash0X (audit@hash0x.com)

25

 File "/usr/local/lib/python3.6/dist-packages/crytic_compile/crytic_compile.py", line 987, in
_compile
 self._platform.compile(self, **kwargs)
 File "/usr/local/lib/python3.6/dist-packages/crytic_compile/platform/solc.py", line 108, in
compile
 targets_json = _get_targets_json(crytic_compile, self._target, **kwargs)
 File "/usr/local/lib/python3.6/dist-packages/crytic_compile/platform/solc.py", line 217, in
_get_targets_json
 force_legacy_json=force_legacy_json,
 File "/usr/local/lib/python3.6/dist-packages/crytic_compile/platform/solc.py", line 413, in
_run_solc
 raise InvalidCompilation(f"Invalid solc compilation {stderr}")
crytic_compile.platform.exceptions.InvalidCompilation: Invalid solc compilation ../Fortress-
contracts/contracts/FAIVaultProxy.sol:6:1: Error: Identifier already declared.
contract FAIVaultProxy is FAIVaultAdminStorage, FAIVaultErrorReporter {
^ (Relevant source part starts here and spans across multiple lines).
../Fortress-contracts/contracts/FAIVaultProxy.sol:3:1: The previous declaration is here:
import "./FAIVaultStorage.sol";

