

FORTRESS PROTOCOL
SMART CONTRACT CODE
REVIEW AND SECURITY

ANALYSIS REPORT

Customer​​:​ JetFuel Team (https://jetfuel.finance)
Prepared on​​: 19/03/2021
Platform​: Binance Smart Chain
Language​: Solidity
Audit Type​: Extensive

audit@etherauthority.io

Table of contents

Document 4

Introduction 6

Quick Stats 7

Executive Summary 8

Code Quality 8

Documentation 9

Use of Dependencies 9

AS-IS overview 10

Severity Definitions 26

Audit ​Findings 26

Conclusion 30

Our Methodology 31

Disclaimers 33

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO PUBLIC AFTER ISSUES ARE RESOLVED.

Documents

Name Smart Contract Code Review and Security
Analysis Report for FORTRESS

Platform Binance Smart Chain / Solidity

File 1 FTS.sol

File 1 MD5 hash 16184E612400DCE0013F54FB60212FF2

File 1 Testnet
Contract URL

https://testnet.bscscan.com/address/0xd8db4d4
09bc9461d3395574d9596e59ded1fba5e#code

File 2 FAI.sol

File 2 MD5 hash D09CB24C6EA078EEC2F38348244E215C

File 2 Testnet
Contract URL

https://testnet.bscscan.com/address/0x3B13b1af
99b6d75D532C4E234fb2c3aE62744b73#code

File 3 Unitroller.sol

File 3 MD5 hash 2CA395D65CCA9872B141A39761850117

File 3 Testnet
Contract URL

https://testnet.bscscan.com/address/​0xB24DaCE
5343A97fc0E82584Ecd52c7e54ABBda09​#code

File 4 Comptroller.sol

File 4 MD5 hash B9215D650D78D056DBF26DFB949FF9DF

File 4 Testnet
Contract URL

https://testnet.bscscan.com/address/0x0996754
B35B71d0F5A43d372Ef79cF5a4e852208#code

File 5 FAIUnitroller.sol

File 5 MD5 hash D363232ED72C9F0B78DE8AB0140EF5D3

File 5 Testnet
Contract URL

https://testnet.bscscan.com/address/0x1221622c
C891Ee3f8A0F779D51f5fe72AF53c290#code

File 6 FAIController.sol

File 6 MD5 hash 28668F1BCD8DD4BFA514789790842396

https://testnet.bscscan.com/address/0xd8db4d409bc9461d3395574d9596e59ded1fba5e#code
https://testnet.bscscan.com/address/0xd8db4d409bc9461d3395574d9596e59ded1fba5e#code
https://testnet.bscscan.com/address/0x3B13b1af99b6d75D532C4E234fb2c3aE62744b73#code
https://testnet.bscscan.com/address/0x3B13b1af99b6d75D532C4E234fb2c3aE62744b73#code
https://testnet.bscscan.com/address/0xB24DaCE5343A97fc0E82584Ecd52c7e54ABBda09#code
https://testnet.bscscan.com/address/0xB24DaCE5343A97fc0E82584Ecd52c7e54ABBda09#code
https://testnet.bscscan.com/address/0xB24DaCE5343A97fc0E82584Ecd52c7e54ABBda09#code
https://testnet.bscscan.com/address/0xB24DaCE5343A97fc0E82584Ecd52c7e54ABBda09#code
https://testnet.bscscan.com/address/0x0996754B35B71d0F5A43d372Ef79cF5a4e852208#code
https://testnet.bscscan.com/address/0x0996754B35B71d0F5A43d372Ef79cF5a4e852208#code
https://testnet.bscscan.com/address/0x1221622cC891Ee3f8A0F779D51f5fe72AF53c290#code
https://testnet.bscscan.com/address/0x1221622cC891Ee3f8A0F779D51f5fe72AF53c290#code

File 6 Testnet
Contract URL

https://testnet.bscscan.com/address/​0x2a81348D
13cd4Dc5A886C1Fb6CB4115C83767f09​#code

File 7 SFTVaultProxy.sol

File 7 MD5 hash 5B2F3BA1C4777003C7BF7AE3D1914043

File 7 Testnet
Contract URL

https://testnet.bscscan.com/address/0xB61B6a4f
486B273A25AAa263D50d8e6b91B78eb4#code

File 8 SFTVault.sol

File 8 MD5 hash 538ABD88AFDC40BC1D1487216BCB5F58

File 8 Testnet
Contract URL

https://testnet.bscscan.com/address/0xd65C9f4e
37a6dB0f6F0ABEc584997D8ac110bE79#code

File 9 FortressLens.sol

File 9 MD5 hash CDEA199BB76B31007252700B9469371C

File 9 Testnet
Contract URL

https://testnet.bscscan.com/address/0xb24dace5
343a97fc0e82584ecd52c7e54abbda09#code

File 10 WhitePaperInterestRateModel.sol

File 10 MD5 hash 111F06FACC068AC86133F754F4396F40

File 10 Testnet
Contract URL

https://testnet.bscscan.com/address/0x3B13b1af
99b6d75D532C4E234fb2c3aE62744b73#code

File 11 FortressPriceOracle.sol

File 11 MD5 hash 4E39ACF0B27511860B168F6C76C85B09

File 11 Testnet
Contract URL

https://testnet.bscscan.com/address/0xb24dace5
343a97fc0e82584ecd52c7e54abbda09#code

File 12 FBep20Delegate.sol

File 12 MD5 hash F48021DCC4AF0D5AFA2B9712C61484E7

File 12 Testnet
Contract URL

https://testnet.bscscan.com/address/​0x0AE91e9B
bCEf6d616760bFEbDa821099C531E61​a#code

File 13 FBep20Delegator.sol (for fUSDC)

File 13 MD5 hash 5993302613299E41D2043DF3459D858C

https://testnet.bscscan.com/address/0x2a81348D13cd4Dc5A886C1Fb6CB4115C83767f09#code
https://testnet.bscscan.com/address/0x2a81348D13cd4Dc5A886C1Fb6CB4115C83767f09#code
https://testnet.bscscan.com/address/0x2a81348D13cd4Dc5A886C1Fb6CB4115C83767f09#code
https://testnet.bscscan.com/address/0x2a81348D13cd4Dc5A886C1Fb6CB4115C83767f09#code
https://testnet.bscscan.com/address/0xB61B6a4f486B273A25AAa263D50d8e6b91B78eb4#code
https://testnet.bscscan.com/address/0xB61B6a4f486B273A25AAa263D50d8e6b91B78eb4#code
https://testnet.bscscan.com/address/0xd65C9f4e37a6dB0f6F0ABEc584997D8ac110bE79#code
https://testnet.bscscan.com/address/0xd65C9f4e37a6dB0f6F0ABEc584997D8ac110bE79#code
https://testnet.bscscan.com/address/0xb24dace5343a97fc0e82584ecd52c7e54abbda09#code
https://testnet.bscscan.com/address/0xb24dace5343a97fc0e82584ecd52c7e54abbda09#code
https://testnet.bscscan.com/address/0x3B13b1af99b6d75D532C4E234fb2c3aE62744b73#code
https://testnet.bscscan.com/address/0x3B13b1af99b6d75D532C4E234fb2c3aE62744b73#code
https://testnet.bscscan.com/address/0xb24dace5343a97fc0e82584ecd52c7e54abbda09#code
https://testnet.bscscan.com/address/0xb24dace5343a97fc0e82584ecd52c7e54abbda09#code
https://testnet.bscscan.com/address/0x0AE91e9BbCEf6d616760bFEbDa821099C531E61a#code
https://testnet.bscscan.com/address/0x0AE91e9BbCEf6d616760bFEbDa821099C531E61a#code
https://testnet.bscscan.com/address/0x0AE91e9BbCEf6d616760bFEbDa821099C531E61a#code
https://testnet.bscscan.com/address/0x0AE91e9BbCEf6d616760bFEbDa821099C531E61a#code

Introduction

We were contracted by the JetFuel team to perform the Security audit of the
smart contracts code. The audit has been performed using manual analysis
as well as using automated software tools. This report presents all the
findings regarding the audit performed on 19/03/2021.

Audit type was Extensive Audit. Which means this audit is concluded based
on Extensive audit scope. This document outlines all the findings as well as
AS-IS overview of the smart contract codes.

File 13 Testnet
Contract URL

https://testnet.bscscan.com/address/0xF984655
CB544Cc25deE85A4d6b1374410F9672c7#code

File 14 Timelock.sol

File 14 MD5 hash 8025863D3B4036F7FFC40E53CAD717AB

File 14 Testnet
Contract URL

https://testnet.bscscan.com/address/0x1CEBf17
2C2c67e25292ED76Af534687bA9d86FcB#code

File 15 GovernorAlpha.sol

File 15 MD5 hash F6CFEA696869B67C6414B4616EA0A6F6

File 15 Testnet
Contract URL

https://testnet.bscscan.com/address/​0x5589DD6f
2FBFE7C668D986Dce031fEF2A848Ca31​#code

https://testnet.bscscan.com/address/0xF984655CB544Cc25deE85A4d6b1374410F9672c7#code
https://testnet.bscscan.com/address/0xF984655CB544Cc25deE85A4d6b1374410F9672c7#code
https://testnet.bscscan.com/address/0x1CEBf172C2c67e25292ED76Af534687bA9d86FcB#code
https://testnet.bscscan.com/address/0x1CEBf172C2c67e25292ED76Af534687bA9d86FcB#code
https://testnet.bscscan.com/address/0x5589DD6f2FBFE7C668D986Dce031fEF2A848Ca31#code
https://testnet.bscscan.com/address/0x5589DD6f2FBFE7C668D986Dce031fEF2A848Ca31#code
https://testnet.bscscan.com/address/0x5589DD6f2FBFE7C668D986Dce031fEF2A848Ca31#code
https://testnet.bscscan.com/address/0x5589DD6f2FBFE7C668D986Dce031fEF2A848Ca31#code

Quick Stats:

Overall Audit Result: ​PASSED

Main
Category

Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks
management

Passed

Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use

vulnerability
N/A

Fallback function misuse Passed
Race condition Passed

Logical vulnerability Passed
Other programming issues Passed

Code
Specification

Function visibility not explicitly declared Passed
Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Other code specification issues Passed
Gas

Optimization
Assert() misuse Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed
Business Risk The maximum limit for mintage not set Moderted

“Short Address” Attack Passed
“Double Spend” Attack Passed

Executive Summary

According to the ​extensive ​audit assessment, Customer`s solidity smart
contract is ​well secured​.

 You are here

We used various tools like SmartDec, Mythril, Slither and Remix IDE. At the
same time this finding is based on critical analysis of the menual audit.
All issues found during automated analysis were manually reviewed and
applicable vulnerabilities are presented in the Audit overview section. General
overview is presented in AS-IS section and all found issues can be found in
the Audit overview section.

We found 0 high, 1 medium and 1 low and some very low level issues.

Code Quality

Fortress protocol consists of 14 core smart contract files. These smart

contracts also contain Libraries, Smart contract inherits and Interfaces.

These are compact and well written contracts.

The libraries in the Fortress protocol are part of its logical algorithm. A library

is a different type of smart contract that contains reusable code. Once

deployed on the blockchain (only once), it is assigned a specific address and

its properties / methods can be reused many times by other contracts in the

Fortress protocol.

The Fortress team has ​not ​provided scenario and unit test scripts, which

would have helped to determine the integrity of the code in an automated

way.

Overall, code parts are well commented. Commenting can provide rich

documentation for functions, return variables and more. Ethereum Natural

Language Specification Format (NatSpec) is used, which is a good thing.

Documentation

We were given Fortress smart contracts in the form of a Bscscan testnet

website links. The hashes of those files and their links are mentioned above

in the table.

As mentioned above, most code parts are well commented. so anyone can

quickly understand the programming flow as well as complex code logic.

Comments are very helpful in understanding the overall architecture of the

protocol. It also provided a clear overview of the system components,

including helpful details, like the lifetime of the background script.

Use of Dependencies
As per our observation, the libraries are used in this smart contract

infrastructure that are based on well known industry standard open source

projects. And their core code blocks are written well.

Apart from libraries, Fortress smart contracts depend on external smart

contracts data, which is provided by oracle smart contract.

AS-IS overview

Fortress.sol contract overview

Fortress protocol is a decentralized marketplace for Lenders and Borrowers
with Borderless Stablecoins. Following are the main components of core
smart contracts.

FTS.sol

(1) Inherited contracts
(a) Owned: ownership contract
(b) Tokenlock: Token locking contract controlled by owner

 (2) Events

(a) event DelegateChanged(address indexed delegator, address indexed
fromDelegate, address indexed toDelegate);

(b) event DelegateVotesChanged(address indexed delegate, uint
previousBalance, uint newBalance);

(c) event Transfer(address indexed from, address indexed to, uint256
amount);

(d) event Approval(address indexed owner, address indexed spender,
uint256 amount);

(3) Functions

Sl. Function Type Observation Conclusion Score
1 constructor write Passed No Issue Passed
2 allowance read Passed No Issue Passed
3 approve write Passed No Issue Passed
4 balanceOf read Passed No Issue Passed
5 transfer write Passed No Issue Passed
6 transferFrom write Passed No Issue Passed
7 delegate write Passed No Issue Passed
8 delegateBySig write Passed No Issue Passed
9 getCurrentVotes read Passed No Issue Passed

FAI.sol

(1) Inherited contracts
(a)LibNote: provides log event

(2) Events

(a) event Approval(address indexed src, address indexed guy, uint wad);
(b) event Transfer(address indexed src, address indexed dst, uint wad);

(3) Functions

10 getPriorVotes read Infinite loop
possibility

Votes must
not be

excessive

Passed

11 _delegate internal Passed No Issue Passed
12 _transferTokens internal Passed No Issue Passed
13 _moveDelegates internal Passed No Issue Passed
14 _writeCheckpoint internal Passed No Issue Passed
15 safe32 read Passed No Issue Passed
16 safe96 read Passed No Issue Passed
17 add96 read Passed No Issue Passed
18 sub96 read Passed No Issue Passed
19 getChainId read Passed No Issue Passed

Sl. Function Type Observation Conclusion Score
1 rely write Passed No Issue Passed
2 deny write Passed No Issue Passed
3 add read Passed No Issue Passed
4 sub read Passed No Issue Passed
5 constructor write Passed No Issue Passed
6 transfer write Passed No Issue Passed
7 transferFrom write Passed No Issue Passed
8 mint write No max

minting
Unitroller
regulates
minting

Passed
with

consent
9 burn write Passed No Issue Passed
10 approve write Passed No Issue Passed
11 push write Passed No Issue Passed
12 pull write Passed No Issue Passed

Unitroller.sol

(1) Inherited contracts
(a) UnitrollerAdminStorage: Admin contract for unitroller
(b) ComptrollerErrorReporter: Error reporting contract

(2) Events

(a) event NewPendingImplementation(address oldPendingImplementation,
address newPendingImplementation);

(b) event NewImplementation(address oldImplementation, address
newImplementation);

(c) event NewPendingAdmin(address oldPendingAdmin, address
newPendingAdmin);

(d) event NewAdmin(address oldAdmin, address newAdmin);

(3) Functions

13 move write Passed No Issue Passed
14 permit write Passed No Issue Passed

Sl. Function Type Observation Conclusion Score
1 constructor write Passed No Issue Passed
2 _setPendingImplemen

tation
write Passed No Issue Passed

3 _acceptImplementatio
n

write Passed No Issue Passed

4 _setPendingAdmin write Passed No Issue Passed
5 _acceptAdmin write Passed No Issue Passed
6 fallback write Delegates to

implementation
No Issue Passed

Comptroller.sol

(1) Inherited contracts
(a) ComptrollerV3Storage: Storage variables of comptroller
(b) ComptrollerInterface: Interfaces for comptroller
(c) ComptrollerErrorReporter: Error reporter contract
(d) Exponential: Library for exponential math functions

(2) Events

(a) event MarketListed(FToken fToken);
(b) event MarketEntered(FToken fToken, address account);
(c) event MarketExited(FToken fToken, address account);
(d) event NewCloseFactor(uint oldCloseFactorMantissa, uint

newCloseFactorMantissa);
(e) event NewCollateralFactor(FToken fToken, uint

oldCollateralFactorMantissa, uint newCollateralFactorMantissa);
(f) event NewLiquidationIncentive(uint oldLiquidationIncentiveMantissa,

uint newLiquidationIncentiveMantissa);
(g) event NewMaxAssets(uint oldMaxAssets, uint newMaxAssets);
(h) event NewPriceOracle(PriceOracle oldPriceOracle, PriceOracle

newPriceOracle);
(i) event NewFAIVaultInfo(address vault_, uint releaseStartBlock_, uint

releaseInterval_);
(j) event NewPauseGuardian(address oldPauseGuardian, address

newPauseGuardian);
(k) event ActionPaused(string action, bool pauseState);
(l) event ActionPaused(FToken fToken, string action, bool pauseState);
(m) event MarketFortress(FToken fToken, bool isFortress);
(n) event NewFortressRate(uint oldFortressRate, uint newFortressRate);
(o) event NewFortressFAIRate(uint oldFortressFAIRate, uint

newFortressFAIRate);
(p) event NewFortressFAIVaultRate(uint oldFortressFAIVaultRate, uint

newFortressFAIVaultRate);
(q) event FortressSpeedUpdated(FToken indexed fToken, uint

newSpeed);
(r) event DistributedSupplierFortress(FToken indexed fToken, address

indexed supplier, uint fortressDelta, uint fortressSupplyIndex);

(s) event DistributedBorrowerFortress(FToken indexed fToken, address
indexed borrower, uint fortressDelta, uint fortressBorrowIndex);

(t) event DistributedFAIMinterFortress(address indexed faiMinter, uint
fortressDelta, uint fortressFAIMintIndex);

(u) event DistributedFAIVaultFortress(uint amount);
(v) event NewFAIController(FAIControllerInterface oldFAIController,

FAIControllerInterface newFAIController);
(w) event NewFAIMintRate(uint oldFAIMintRate, uint newFAIMintRate);
(x) event ActionProtocolPaused(bool state);

(3) Functions

Sl Function Type Observation Conclusion Score
1 constructor write Passed No Issue Passed
2 getAssetsIn read Passed No Issue Passed
3 checkMembership read Passed No Issue Passed
4 enterMarkets write Infinite loop

possibility
Keep

fTokens
limited

Passed

5 addToMarketInternal internal Passed No Issue Passed
6 exitMarket write Passed No Issue Passed
7 mintAllowed write Passed No Issue Passed
8 mintVerify write Passed No Issue Passed
9 redeemAllowed write Passed No Issue Passed
10 redeemAllowedInter

nal
internal Passed No Issue Passed

11 redeemVerify write Passed No Issue Passed
12 borrowAllowed write Passed No Issue Passed
13 borrowVerify write Passed No Issue Passed
14 repayBorrowAllowed write Passed No Issue Passed
15 repayBorrowVerify write Passed No Issue Passed
16 liquidateBorrowAllo

wed
write Passed No Issue Passed

17 liquidateBorrowVerif
y

write Passed No Issue Passed

18 seizeAllowed write Passed No Issue Passed
19 seizeVerify write Passed No Issue Passed
20 transferAllowed write Passed No Issue Passed
21 transferVerify write Passed No Issue Passed
22 getAccountLiquidity read Passed No Issue Passed

23 getHypotheticalAcco
untLiquidity

read Passed No Issue Passed

24 getHypotheticalAcco
untLiquidityInternal

internal Infinite loop
possibility

Keep assets
limited

Passed

25 liquidateCalculateSe
izeTokens

read Passed No Issue Passed

26 _setPriceOracle write Passed No Issue Passed
27 _setCloseFactor write Passed No Issue Passed
28 _setCollateralFactor write Passed No Issue Passed
29 _setMaxAssets write Passed No Issue Passed
30 _setLiquidationIncen

tive
write Passed No Issue Passed

31 _supportMarket write Passed No Issue Passed
32 _addMarketInternal internal Passed No Issue Passed
33 _setProtocolPaused write Passed No Issue Passed
34 _setFAIController write Passed No Issue Passed
35 _setFAIMintRate write Passed No Issue Passed
36 _setTreasuryData write Passed No Issue Passed
37 _become write Passed No Issue Passed
38 refreshFortressSpee

ds
write Passed No Issue Passed

39 refreshFortressSpee
dsInternal

internal Infinite loop
possibility

Markets
must be
limited

Passed

40 updateFortressSupp
lyIndex

internal Passed No Issue Passed

41 updateFortressBorro
wIndex

internal Passed No Issue Passed

42 distributeSupplierFor
tress

internal Passed No Issue Passed

43 distributeBorrowerF
ortress

internal Passed No Issue Passed

44 distributeFAIMinterF
ortress

write Passed No Issue Passed

45 transferFTS internal Passed No Issue Passed
46 claimFortress write Infinite loop

possibility
Array length

must be
limited

Passed

47 _setFortressRate write Passed No Issue Passed
48 _setFortressFAIRate write Passed No Issue Passed
49 _setFortressFAIVaul

tRate
write Passed No Issue Passed

FAIUnitroller.sol

(1) Inherited contracts
(a) FAIUnitrollerAdminStorage: Admin contract for FAI unitroller
(b)FAIControllerErrorReporter: Error reporting contract

(2) Events

(a) event NewPendingImplementation(address oldPendingImplementation,
address newPendingImplementation);

(b) event NewImplementation(address oldImplementation, address
newImplementation);

(c) event NewPendingAdmin(address oldPendingAdmin, address
newPendingAdmin);

(d) event NewAdmin(address oldAdmin, address newAdmin);

(3) Functions

50 _setFAIVaultInfo write Passed No Issue Passed
51 _addFortressMarket

s
write Infinite loop

possibility
Array length

must be
limited

Passed

52 _addFortressMarketI
nternal

internal Passed No Issue Passed

53 _dropFortressMarke
t

write Passed No Issue Passed

54 getAllMarkets read Passed No Issue Passed
55 getBlockNumber read Passed No Issue Passed
56 getFTSAddress read hard coded

address
Keep it in a

variable
Passed

57 setMintedFAIOf write Passed No Issue Passed
58 releaseToVault write Passed No Issue Passed

Sl. Function Type Observation Conclusion Score
1 constructor write Passed No Issue Passed
2 _setPendingImplemen

tation
write Passed No Issue Passed

3 _acceptImplementatio
n

write Passed No Issue Passed

4 _setPendingAdmin write Passed No Issue Passed

FAIController.sol

(1) Inherited contracts
(a) FAIControllerStorage: Admin contract for FAI unitroller
(b) FAIControllerErrorReporter: Error reporting contract
(c) Exponential: math functions for exponential

(2) Events

(a) event NewComptroller(ComptrollerInterface oldComptroller,
ComptrollerInterface newComptroller);

(b) event MintFAI(address minter, uint mintFAIAmount);
(c) event RepayFAI(address repayer, uint repayFAIAmount);

(3) Functions

5 _acceptAdmin write Passed No Issue Passed
6 fallback write Delegates to

implementation
No Issue Passed

Sl. Function Type Observation Conclusion Score
1 mintFAI write Passed No Issue Passed
2 repayFAI write Passed No Issue Passed
3 _initializeFortressFAIS

tate
write Passed No Issue Passed

4 updateFortressFAIMin
tIndex

write Passed No Issue Passed

5 calcDistributeFAIMinte
rFortress

write Passed No Issue Passed

6 _setComptroller write Passed No Issue Passed
7 _become write Passed No Issue Passed
8 getMintableFAI write Infinite loop

possibility
Keep array

length
limited

Passed

9 getBlockNumber read Passed No Issue Passed
10 getFAIAddress read hard coded

address
Keep it in a

variable
Passed

SFTVaultProxy.sol

(1) Inherited contracts
(a) SFTVaultAdminStorage: Admin contract for FAI unitroller
(b) SFTVaultErrorReporter: Error reporting contract

(2) Events

(a) event NewPendingImplementation(address oldPendingImplementation,
address newPendingImplementation);

(b) event NewImplementation(address oldImplementation, address
newImplementation);

(c) event NewPendingAdmin(address oldPendingAdmin, address
newPendingAdmin);

(d) event NewAdmin(address oldAdmin, address newAdmin);

(3) Functions

SFTVault.sol

(1) Inherited contracts
(a) SFTVaultStorage: Storage contract for SFT Vault

(2) Usages

(a) using SafeMath for uint256
(b) using SafeBEP20 for IBEP20

Sl. Function Type Observation Conclusion Score
1 constructor write Passed No Issue Passed
2 _setPendingImplemen

tation
write Passed No Issue Passed

3 _acceptImplementatio
n

write Passed No Issue Passed

4 _setPendingAdmin write Passed No Issue Passed
5 _acceptAdmin write Passed No Issue Passed
6 fallback function write Delegates to

implementation
No Issue Passed

(3) Events
(a) event Deposit(address indexed user, uint256 amount);
(b) event Withdraw(address indexed user, uint256 amount);
(c) event AdminTransfered(address indexed oldAdmin, address indexed

newAdmin);

(3) Functions

FortressLens.sol

(1) Interface
(a) ComptrollerLensInterface: This is for comptroller Lens

(2) Structs

(a) FTokenMetadata
(b) FTokenBalances
(c) FTokenUnderlyingPrice
(d) AccountLimits
(e) GovReceipt

Sl. Function Type Observation Conclusion Score
1 constructor write Passed No Issue Passed
2 deposit write Passed No Issue Passed
3 withdraw write Passed No Issue Passed
4 claim write Passed No Issue Passed
5 _withdraw internal Passed No Issue Passed
6 pendingFTS read Passed No Issue Passed
7 updateAndPayOutP

ending
internal Passed No Issue Passed

8 safeFTSTransfer internal Passed No Issue Passed
9 updatePendingRew

ards
write Passed No Issue Passed

10 updateVault internal Passed No Issue Passed
11 getAdmin read Passed No Issue Passed
12 burnAdmin write Passed No Issue Passed
13 setNewAdmin write Passed No Issue Passed
14 _become write Passed No Issue Passed
15 setFortressInfo write Passed No Issue Passed

(f) GovProposal
(g) FTSBalanceMetadata
(h) FTSBalanceMetadataExt
(i) FortressVotes

(3) Functions

Sl. Function Type Observation Conclusion Score
1 fTokenMetadata write Passed No Issue Passed
2 fTokenMetadataAll write Infinite loop

possibility
Keep array

length
limited

Passed

3 fTokenBalances write Passed No Issue Passed
4 fTokenBalancesAll write Infinite loop

possibility
Keep array

length
limited

Passed

5 fTokenUnderlyingPr
ice

read Passed No Issue Passed

6 fTokenUnderlyingPr
iceAll

read Infinite loop
possibility

Keep array
length
limited

Passed

7 getAccountLimits read Passed No Issue Passed
8 getGovReceipts read Infinite loop

possibility
Keep array

length
limited

Passed

9 setProposal internal Passed No Issue Passed
10 getGovProposals read Infinite loop

possibility
Keep array

length
limited

Passed

11 getFTSBalanceMet
adata

read Passed No Issue Passed

12 getFTSBalanceMet
adataExt

write Passed No Issue Passed

13 getFortressVotes read Infinite loop
possibility

Keep array
length
limited

Passed

WhitePaperInterestRateModel.sol

(1) Inherited contracts
(a) InterestRateModel: For Interest rates

(2) Usages

(a) using SafeMath for uint

(3) Events
(a) event NewInterestParams(uint baseRatePerBlock, uint

multiplierPerBlock);

(4) Functions

FortressPriceOracle.sol

(1) Inherited contracts
(a) PriceOracle: To get price data from market

(2) Usages

(a) using SafeMath for uint256

(3) Events
(a) event PricePosted(address asset, uint previousPriceMantissa, uint

requestedPriceMantissa, uint newPriceMantissa);
(b) event NewAdmin(address oldAdmin, address newAdmin);

(4) Interface

(a) IStdReference

Sl. Function Type Observation Conclusion Score
1 constructor write Passed No Issue Passed
2 utilizationRate read Passed No Issue Passed
3 getBorrowRate read Passed No Issue Passed
4 getSupplyRate read Passed No Issue Passed

(5) Functions

FBep20Delegator.sol (This contract will be the same for all fTokens)

(1) Inherited contracts
(a) FTokenInterface: fToken functions
(b) FBep20Interface: BEP20 standard functions
(c) FDelegatorInterface: Delegator Interface

(2) Functions

Sl. Function Type Observation Conclusion Score
1 constructor write Passed No Issue Passed
2 getUnderlyingPrice read Passed No Issue Passed
3 setUnderlyingPrice write Passed No Issue Passed
4 setDirectPrice write Passed No Issue Passed
5 assetPrices read Passed No Issue Passed
6 compareStrings read Passed No Issue Passed
7 setAdmin write Passed No Issue Passed

Sl. Function Type Observation Conclusion Score
1 constructor write Passed No Issue Passed
2 _resignImplementat

ion
write Passed No Issue Passed

3 _setImplementation write Passed No Issue Passed
4 mint write Passed No Issue Passed
5 redeem write Passed No Issue Passed
6 redeemUnderlying write Passed No Issue Passed
7 borrow write Passed No Issue Passed
8 repayBorrow write Passed No Issue Passed
9 repayBorrowBehalf write Passed No Issue Passed
10 liquidateBorrow write Passed No Issue Passed
11 transfer write Passed No Issue Passed
12 transferFrom write Passed No Issue Passed
13 approve write Passed No Issue Passed
14 allowance read Passed No Issue Passed
15 balanceOf read Passed No Issue Passed
16 balanceOfUnderlyin

g
write Passed No Issue Passed

17 getAccountSnapsho
t

read Passed No Issue Passed

18 borrowRatePerBloc
k

read Passed No Issue Passed

19 supplyRatePerBloc
k

read Passed No Issue Passed

20 totalBorrowsCurrent write Passed No Issue Passed
21 borrowBalanceCurr

ent
write Passed No Issue Passed

22 borrowBalanceStor
ed

read Passed No Issue Passed

23 exchangeRateCurre
nt

write Passed No Issue Passed

24 exchangeRateStore
d

read Passed No Issue Passed

25 getCash read Passed No Issue Passed
26 accrueInterest write Passed No Issue Passed
27 seize write Passed No Issue Passed
28 _setPendingAdmin write Passed No Issue Passed
29 _setComptroller write Passed No Issue Passed
30 _setReserveFactor write Passed No Issue Passed
31 _acceptAdmin write Passed No Issue Passed
32 _addReserves write Passed No Issue Passed
33 _reduceReserves write Passed No Issue Passed
34 _transferReserves write Passed No Issue Passed
35 _setInterestRateMo

del
write Passed No Issue Passed

36 delegateTo internal Passed No Issue Passed
37 delegateToImpleme

ntation
write Passed No Issue Passed

38 delegateToViewImp
lementation

read Passed No Issue Passed

39 delegateToViewAnd
Return

read Passed No Issue Passed

40 delegateAndReturn write Passed No Issue Passed
41 fallback function write Passed No Issue Passed

Timelock.sol

(1) Usages
(a) using SafeMath for uint

(2) Events

(a) event NewAdmin(address indexed newAdmin);
(b) event NewPendingAdmin(address indexed newPendingAdmin);
(c) event NewDelay(uint indexed newDelay);
(d) event CancelTransaction(bytes32 indexed txHash, address indexed

target, uint value, string signature, bytes data, uint eta);
(e) event ExecuteTransaction(bytes32 indexed txHash, address indexed

target, uint value, string signature, bytes data, uint eta);
(f) event QueueTransaction(bytes32 indexed txHash, address indexed

target, uint value, string signature, bytes data, uint eta);

(3) Functions

Sl. Function Type Observation Conclusio
n

Score

1 constructor write Passed No Issue Passed
2 setDelay write caller was

required to be
contract itself

It should be
an admin

Passed
with

consent
3 acceptAdmin write Passed No Issue Passed
4 setPendingAdmin write caller was

required to be
contract itself

It should be
an admin

Passed
with

consent
5 queueTransaction write Passed No Issue Passed
6 cancelTransaction write Passed No Issue Passed
7 executeTransaction write Passed No Issue Passed
8 getBlockTimestamp read Passed No Issue Passed

GovernorAlpha.sol

(1) Structs
(a) Proposal
(b) Receipt

(2) Events

(a) event ProposalCreated(uint id, address proposer, address[] targets,
uint[] values, string[] signatures, bytes[] calldatas, uint startBlock, uint
endBlock, string description);

(b) event VoteCast(address voter, uint proposalId, bool support, uint
votes);

(c) event ProposalCanceled(uint id);
(d) event ProposalQueued(uint id, uint eta);
(e) event ProposalExecuted(uint id);

(3) Functions

Sl. Function Type Observation Conclusio
n

Score

1 constructor write Passed No Issue Passed
2 propose write Passed No Issue Passed
3 queue write Passed No Issue Passed
4 _queueOrRevert internal Passed No Issue Passed
5 execute write Infinite loop

possibility
Keep array

length
limited

Passed

6 cancel write Infinite loop
possibility

Keep array
length
limited

Passed

7 getActions read Passed No Issue Passed
8 getReceipt read Passed No Issue Passed
9 state read Passed No Issue Passed
10 castVote write Passed No Issue Passed
11 castVoteBySig write Passed No Issue Passed
12 _castVote internal Passed No Issue Passed
13 __acceptAdmin write Passed No Issue Passed
14 __abdicate write Passed No Issue Passed
15 __queueSetTimeloc

kPendingAdmin
write Passed No Issue Passed

Severity Definitions

Audit Findings

Critical

No critical severity vulnerabilities were found.

High

No high severity vulnerabilities were found.

16 __executeSetTimel
ockPendingAdmin

write Passed No Issue Passed

17 add256 read Passed No Issue Passed
18 sub256 read Passed No Issue Passed
19 getChainId read Passed No Issue Passed

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to tokens loss etc.
High-level vulnerabilities are difficult to exploit;

High
however, they also have significant impact on smart
contract execution, e.g. public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low-level vulnerabilities are mostly related to
Low outdated, unused etc. code snippets, that can’t have

significant impact on execution

Lowest / Code Lowest-level vulnerabilities, code style violations
Style / Best and info statements can’t affect smart contract

Practice execution and can be ignored.

Medium

(1) Caller is smart contract itself in Timelock.sol

Ideally, the caller should be an admin wallet.

Resolution​: we got confirmation from the Fortress team as this is part of the
plan.

Low

(1) Infinite loops possibility at multiple places:

As seen in the AS-IS section, there are several places in the smart contracts,

where array.length is used directly in the loops. It is recommended to put

some kind of limits, so it does not go wild and create any scenario where it

can hit the block gas limit.

Resolution​: We got confirmation from the Fortress team that the array will be

provided as limited length. And this will be taken care of from the client side.

Very Low

(1) Ownership transfer function:

Ownable.sol smart contract has active ownership transfer. This will be

troublesome if the ownership was sent to an incorrect address by human

error.

so, it is a good practice to implement acceptOwnership style to prevent it.

Code flow similar to below:

Resolution​: Fortress team acknowledged this, as this should be taken care of

from admin side.

(2) Use the latest solidity version while contract deployment to prevent any

compiler version level bugs.

Resolution​: This issue is acknowledged.

Discussion / Best practices​:

(1) Max minting limit for FAI is not set. Also, the owner has the ability to

assign other minter wallets which can mint new tokens. In an ideal scenario,

the unitroller will mint it. But still there is a way to mint more tokens. This must

be limited somehow to protect the tokenomics from being inflated.

(2) Overpowered functions: There are so many functions which are

authorised persons (admin/owner) only. This makes this platform more

centralized due to its dependence on human actions. And it would be

troublesome if the private key of that owner wallet would be compromised.

(3) ​Approve of BEP20 standard: This can be used to front run. From the

client side, only use this function to change the allowed amount to 0 or from 0

(wait till transaction is mined and approved). This should be done from the

client side.

(4) getFTSAddress function in Comptroller.sol is hard coded. It is

recommended to put it in a variable and also make an admin function to

change this. This is useful in the event of that contract having found any bug

and needing to swap that contract.

(5) FAI.sol and GovernorAlpha.sol smart contracts are having signature

based actions. It is good as it saves gas cost to approve transactions in case

of FAI token. But on another hand, it needs high levels of security measures

in the dapps. Because if the signatures of users would have stolen, then they

lose their tokens. If this is not really needed, then better to remove it as risk is

far more than the benefits.

Conclusion

We were given contract code. And we have used all possible tests based on

given objects as files. The contracts are written so systematic, that we did not

find any major issues. ​So it is good to go for the production.

Since possible test cases can be unlimited for such extensive smart contract

protocol, so we provide no such guarantee of future outcomes. We have used

all the latest static tools and manual observations to cover maximum possible

test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with

static analysis tools. Smart Contract’s high level description of functionality

was presented in As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the

reviewed code.

Security state of the reviewed contract, based on extensive audit procedure

scope is “​Well Secured​”.

Our Methodology

We like to work with a transparent process and make our reviews a

collaborative effort. The goals of our security audits are to improve the quality

of systems we review and aim for sufficient remediation to help protect users.

The following is the methodology we use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with

code logic, error handling, protocol and header parsing, cryptographic errors,

and random number generators. We also watch for areas where more

defensive programming could reduce the risk of future mistakes and speed

up future audits. Although our primary focus is on the in-scope code, we

examine dependency code and behavior when it is relevant to a particular

line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface

interaction, and whitebox penetration testing. We look at the project's web site

to get a high level understanding of what functionality the software under

review provides. We then meet with the developers to gain an appreciation of

their vision of the software. We install and use the relevant software,

exploring the user interactions and roles. While we do this, we brainstorm

threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code

dependencies, skim open issue tickets, and generally investigate details other

than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a

potential issue is discovered, we immediately create an Issue entry for it in

this document, even though we have not yet verified the feasibility and impact

of the issue. This process is conservative because we document our

suspicions early even if they are later shown to not represent exploitable

vulnerabilities. We generally follow a process of first documenting the

suspicion with unresolved questions, then confirming the issue through code

analysis, live experimentation, or automated tests. Code analysis is the most

tentative, and we strive to provide test code, log captures, or screenshots

demonstrating our confirmation. After this we analyze the feasibility of an

attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and

finally we suggest the requirements for remediation engineering for future

releases. The mitigation and remediation recommendations should be

scrutinized by the developers and deployment engineers, and successful

mitigation and remediation is an ongoing collaborative process after we

deliver our report, and before the details are made public.

Disclaimers

EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the
best industry practices at the date of this report, in relation to: cybersecurity
vulnerabilities and issues in smart contract source code, the details of which
are disclosed in this report, (Source Code); the Source Code compilation,
deployment and functionality (performing the intended functions).

Due to the fact that the total number of test cases are unlimited, so the audit
makes no statements or warranties on security of the code. It also cannot be
considered as a sufficient assessment regarding the utility and safety of the
code, bugfree status or any other statements of the contract. While we have
done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only. We also suggest
to conduct a bug bounty program to confirm the high level of security of this
smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have their own vulnerabilities that can lead to hacks. Thus, the
audit can’t guarantee explicit security of the audited smart contracts.

